A global coupled Eulerian-Lagrangian model and 1 × 1 km CO2 surface flux dataset for high-resolution atmospheric CO2 transport simulations (2024)

Articles | Volume 5, issue 1

  • Article
  • Peer review
  • Metrics
  • Related articles

Articles | Volume 5, issue 1

https://doi.org/10.5194/gmd-5-231-2012

© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.

https://doi.org/10.5194/gmd-5-231-2012

© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.

Articles | Volume 5, issue 1

  • Article
  • Peer review
  • Metrics
  • Related articles

Development and technical paper

|A global coupled Eulerian-Lagrangian model and 1 × 1 km CO2 surface flux dataset for high-resolution atmospheric CO2 transport simulations (1)

15 Feb 2012

Development and technical paper | A global coupled Eulerian-Lagrangian model and 1 × 1 km CO2 surface flux dataset for high-resolution atmospheric CO2 transport simulations (2)|15 Feb 2012

A. Ganshin, T. Oda, M. Saito, S. Maksyutov, V. Valsala, R. J. Andres, R. E. Fisher, D. Lowry, A. Lukyanov, H. Matsueda, E. G. Nisbet, M. Rigby, Y. Sawa, R. Toumi, K. Tsuboi, A. Varlagin, and R. Zhuravlev

A.Ganshin

Central Aerological Observatory, Dolgoprudny, Russia

T.Oda

Center for Global Environmental Research, National Institute for Environmental Studies, Tsukuba, Japan

now at: Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, USA/National Oceanic and Atmosphere Administration, Earth System Research Laboratory, Boulder, USA

M.Saito

Center for Global Environmental Research, National Institute for Environmental Studies, Tsukuba, Japan

now at: LSCE, Gif Sur Yvette, France

S.Maksyutov

Center for Global Environmental Research, National Institute for Environmental Studies, Tsukuba, Japan

V.Valsala

Center for Global Environmental Research, National Institute for Environmental Studies, Tsukuba, Japan

now at: CAT/ESSC, Indian Institute of Tropical Meteorology, Pune, India

R. J.Andres

Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, USA

R. E.Fisher

Department of Earth Sciences, Royal Holloway, University of London, London, UK

D.Lowry

Department of Earth Sciences, Royal Holloway, University of London, London, UK

A.Lukyanov

Central Aerological Observatory, Dolgoprudny, Russia

H.Matsueda

Meteorological Research Institute, Tsukuba, Japan

E. G.Nisbet

Department of Earth Sciences, Royal Holloway, University of London, London, UK

M.Rigby

School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK

Y.Sawa

Meteorological Research Institute, Tsukuba, Japan

R.Toumi

Department of Physics, Imperial Collage London, London, UK

K.Tsuboi

Meteorological Research Institute, Tsukuba, Japan

A.Varlagin

A.N. Severtsov Institute of Ecology and Evolution, Russia

Russian State Agrarian University – Moscow Timiryazev Agricultural Academy, Russia

R.Zhuravlev

Central Aerological Observatory, Dolgoprudny, Russia

Abstract. We designed a method to simulate atmospheric CO2 concentrations at several continuous observation sites around the globe using surface fluxes at a very high spatial resolution. The simulations presented in this study were performed using the Global Eulerian-Lagrangian Coupled Atmospheric model (GELCA), comprising a Lagrangian particle dispersion model coupled to a global atmospheric tracer transport model with prescribed global surface CO2 flux maps at a 1 × 1 km resolution. The surface fluxes used in the simulations were prepared by assembling the individual components of terrestrial, oceanic and fossil fuel CO2 fluxes. This experimental setup (i.e. a transport model running at a medium resolution, coupled to a high-resolution Lagrangian particle dispersion model together with global surface fluxes at a very high resolution), which was designed to represent high-frequency variations in atmospheric CO2 concentration, has not been reported at a global scale previously. Two sensitivity experiments were performed: (a) using the global transport model without coupling to the Lagrangian dispersion model, and (b) using the coupled model with a reduced resolution of surface fluxes, in order to evaluate the performance of Eulerian-Lagrangian coupling and the role of high-resolution fluxes in simulating high-frequency variations in atmospheric CO2 concentrations. A correlation analysis between observed and simulated atmospheric CO2 concentrations at selected locations revealed that the inclusion of both Eulerian-Lagrangian coupling and high-resolution fluxes improves the high-frequency simulations of the model. The results highlight the potential of a coupled Eulerian-Lagrangian model in simulating high-frequency atmospheric CO2 concentrations at many locations worldwide. The model performs well in representing observations of atmospheric CO2 concentrations at high spatial and temporal resolutions, especially for coastal sites and sites located close to sources of large anthropogenic emissions. While this study focused on simulations of CO2 concentrations, the model could be used for other atmospheric compounds with known estimated emissions.

Download & links

  • Article (PDF, 1223 KB)

Download & links

  • Article (1223 KB)
  • BibTeX
  • EndNote

How to cite. Ganshin, A., Oda, T., Saito, M., Maksyutov, S., Valsala, V., Andres, R. J., Fisher, R. E., Lowry, D., Lukyanov, A., Matsueda, H., Nisbet, E. G., Rigby, M., Sawa, Y., Toumi, R., Tsuboi, K., Varlagin, A., and Zhuravlev, R.: A global coupled Eulerian-Lagrangian model and 1 × 1 km CO2 surface flux dataset for high-resolution atmospheric CO2 transport simulations, Geosci. Model Dev., 5, 231–243, https://doi.org/10.5194/gmd-5-231-2012, 2012.

Received: 26 Jul 2011

Discussion started: 24 Aug 2011

Revised: 23 Jan 2012

Accepted: 27 Jan 2012

Published: 15 Feb 2012
A global coupled Eulerian-Lagrangian model and 1 × 1 km CO2 surface flux dataset for high-resolution atmospheric CO2 transport simulations (2024)

References

Top Articles
Latest Posts
Article information

Author: Golda Nolan II

Last Updated:

Views: 5604

Rating: 4.8 / 5 (78 voted)

Reviews: 85% of readers found this page helpful

Author information

Name: Golda Nolan II

Birthday: 1998-05-14

Address: Suite 369 9754 Roberts Pines, West Benitaburgh, NM 69180-7958

Phone: +522993866487

Job: Sales Executive

Hobby: Worldbuilding, Shopping, Quilting, Cooking, Homebrewing, Leather crafting, Pet

Introduction: My name is Golda Nolan II, I am a thoughtful, clever, cute, jolly, brave, powerful, splendid person who loves writing and wants to share my knowledge and understanding with you.